
The Wall
VST Effect Plug-In Report

Allen Pestaluky

Lecturer: Dr. Chris Joslin
April 9th, 2008

Term Project Part B, IMD3004



The Wall VST Plug-In Report [IMD 3004]	 Allen Pestaluky

April 9th, 2008	 Page �

1 Introduction
This report outlines the development of a Virtual Studio Technology (VST) effect plug-in 
that simulate refections off of one or two surfaces. This plug-in has been completed as a 
term project for IMD 3004: Human Computer Interaction & Design. Diagrams and screen-
shots will be used to help explain the design and use of certain components of the VST 
plug-in.

2 Package Contents
2.1 Final Release Plug-In

This final release plug-in is ready to be loaded into any VST compatible environment. It has 
been tested using Cubase LE 1 and the free Wavosaur.

2.2 Visual Studio 2005 Source
The full solution and all source code is located in the Visual Studio 2005 Source directory.

2.3 Audio Samples
An audio sample has been provided and processed using The Wall VST effect plug-in. This 
audio sample has been processed with all four preset programs.

2.4 VST SDK Reference [Documentation, Sample Projects, etc.]
The SDK used to develop this plug-in has been provided for reference.

The sample solution used to develop this plug-in is located at “VST SDK\vstsdk2.4\public.
sdk\samples\vst2.x\win”

The VST SDK documentation is located at “VST SDK\vstsdk2.4\index.html”.

3 Virtual Studio Technology
The Virtual Studio Technology (VST) interface developed by Steinberg is provided as a free 
software development kit (SDK). A VST plug-in created with this SDK can be integrated 
into any VST compatible software environment such as Steinberg’s Cubase, Adobe’s Audi-
tion, or other free software such as Wavosaur. It is possible to create VST effects and VST 
instruments. Effects can be applied to any audio channel, while instruments can be applied 
to any MIDI channel. This project is a VST effect plug-in.

3.1 Developing and Using VST Effect Plug-Ins
There are two components to a VST effect plug-in:

3.1.1 Audio Processing
The audio processing component is all that is required to create a VST effect plug-in. This 
component is what performs changes to the audio stream and is what has been developed 
for this project.

3.1.2 User Interface
“All user-interface issues are entirely separated from the audio processing issues. At its sim-

http://www.wavosaur.com/
http://www.steinberg.net/983+M52087573ab0.html
http://www.wavosaur.com/


The Wall VST Plug-In Report [IMD 3004]	 Allen Pestaluky

April 9th, 2008	 Page �

plest there is an option where you can avoid providing a user interface at all. In this case 
the host requests character strings from the Plug-In representing each of the parameters. 
The host can use the separate ASCII strings for the value, the label, and the units of the 
parameters to construct its own user interface.” [Steinberg VST SDK 2.4 Documentation]

This project does not use a custom user interface. Instead, as stated above, the host ap-
plication presents the programs and parameters of this VST plug-in using its own methods. 

4 How To Use
4.1 Loading the Plug-In

The process for using a VST effect plug-in can be different for each host software. The 
plug-in must be loaded into the host’s VST effect list. Sometimes you may need to copy the 
plug-in into the VST directory of your host (may be located at “C:\Program Files\[host]\Vst-
plugins\”). In other cases, the host may allow you to load the plug-in directly through it’s 
own interface. Wavosaur allows VST plug-ins to be loaded to a “Rack” by clicking the “VST 
Rack” button on the main window of the program.

4.2 Changing Parameters
Parameters of the plug-in can be changed in real time 
by moving the sliders. Depending on the environ-
ment, the parameters may be displayed slightly 
differently. When it comes to the inner workings of 
the plug-in, each parameter is simply a value from 
0.0 to 1.0. More understandable representations 
of these values are displayed beside the slider. Be 
careful with some parameters, as they could cause 
your audio stream to quickly become very loud. 
This plug-in has been designed to give the user full 
control of parameters to ensure as few limitations to 

the user as possible.

4.3 Parameter Descriptions
Please see the diagram above for a visual representation of these parameters.

4.3.1 InMix
Controls the volume of the source audio stream.

4.3.2 Angle
The angle of the listener. (0 degrees is facing Wall #1)

Wall #1
Listener

Source

Wall #2



The Wall VST Plug-In Report [IMD 3004]	 Allen Pestaluky

April 9th, 2008	 Page �

4.3.3 W1Delay & W2Delay
The distance between the listener and the specified wall. This value is measured by the 
delay of the audio in milliseconds.

4.3.4 W1Gain & W2Gain
The reflectivity of the specified wall.

4.3.5 W1Pitch & W2Pitch
The pitch shift of the specified wall. A value of 1.0 is no change, 0.5 is one octave down, 
2.0 is one octave up.

Note: Because of the slow speed of the Fourier transform used for this pitch shift, it may 
not be possible to perform two, or even one, pitch shifts in real time. Please consider pro-
cessing pitch shifts only during final mixing to a file instead of during real time playback.

4.3.6 W2Enable
Switch the second wall on or off.

4.4 Selecting a Program
Four preset programs have been provided to get you started with understanding what 
the plug-in is capable of. Extra spaces for you to save your own presets have also been 
provided. The preset programs are as follows:

4.4.1 3D Reverb
Simulates a pseudo-3D reverb.

4.4.2 Walking Up
Performs a pitch shift up after every reflection off the second wall.

4.4.3 Echo
Simulates a simple stereo echo

4.4.4 Talking To Myself
Reflects the sound stream off a far wall and a near wall.

4.5 Stereo Vs. Mono
For some software environments, such as Cubase LE 1, a stereo output is only possible 
when the VST effect plug-in is capable of receiving a stereo input. For this reason, this 
plug-in has been developed to receive stereo input but will only process the left channel of 
the given audio stream.

In the case of a mono input and stereo output, the mono input channel will be processed 
as normal and a stereo result will be returned.

When only a mono output is possible, the first input channel will be processed as normal 
but only the left output channel will be returned. Because of this, be careful to not use the 
Listener’s Angle Parameter when your environment only accepts a mono output.



The Wall VST Plug-In Report [IMD 3004]	 Allen Pestaluky

April 9th, 2008	 Page �

5 How it Works & Completed Objectives
5.1 Processing Flow Diagram

5.2 Audio Processing
[see awp_the_wall.h and awp_the_wall.cpp]

When the effect is loaded into the host environment, an instance of AWPTheWall is cre-
ated (see awp_the_wall.cpp: “AudioEffect* createEffectInstance ()”. This object inherits the 
attributes of the AudioEffectX class that has been developed by Steinberg for VST effect 
plug-ins.

All effect initialization, buffer creation, and setup is performed in the constructor of the 
class. Buffers are deleted when the effect is un-loaded in the destructor. All buffers are 
cleared when the effect is loaded or re-loaded in the “resume()” method.

All audio processing is performed in AWPTheWall::processReplacing(). This method is used 
by the host application to pass pointers to the in and out audio streams. They are provided 
as two dimensional float arrays, where the first set of values is the left channel and the 
second is the right channel.

Audio Processor

Final Audio 
Stream

Given Audio 
Stream

Wall # 1 
Processing

Spacial Processing 
for Wall #1

Wall # 2 
Processing

Spacial Processing 
for Wall #2



The Wall VST Plug-In Report [IMD 3004]	 Allen Pestaluky

April 9th, 2008	 Page �

5.3 Wall Processing
[see awp_awall.h and awp_awall.cpp]

Wall processing is performed in separate instances of the “AWall” class. This class performs 
all wall-related effects and processing and stores the result in a buffer that is accessed by 
the main audio effect object when needed.

5.4 Parameters
[see awp_the_wall.h and awp_the_wall.cpp]

Parameters are set and retrieved from virtual methods in the AWPTheWall class. All 
parameters, including wall parameters, are stored in this main effect class. All walls access 
these values by using pointers given in the initialization of the wall.

For certain parameters such as the Pitch, the user may want to turn off the effect entirely 
by setting it to a “no-change” value. To allow the user to select this exact value, a “snap-
ping” zone has been included that will make the retrieved value exactly “no-change” 
when the host or other processing methods request the value. See AWall::getReflect() and 
AWall::getPitch() for examples of this.

5.5 Listener Processing
[see awp_the_wall.cpp: void AWPTheWall::processListener()]

Listener (or spacial) processing is handled by one method of the AWPTheWall class. This 
listener has a left and right channel that will mix the results of the wall streams according 
to the angle at which the listener is positioned giving a pseudo-spacial stereo effect.

5.6 Programs and Presets
[see awp_the_wall_program.h and awp_the_wall_program.cpp]

In the original design, it was missunderstood that the host application delt with all effect 
programs entirely. The design was changed so programs and preset programs have been 
included in this plug-in. Because these presets have been provided, there is now no need 
for “Reset Wall” buttons of the original design.

All programs are stored in objects of the class AWPTheWallProgram. When an object 
of this class is created, it will construct to default values. In the constructor of the AW-
PTheWall effect object, an array of programs is created and the presets are created by 
assigning their values to specific programs in the array.

These programs are set and requested by the host through virtual methods in the effect 
object such as “void AWPTheWall::setProgram ()”

6 Difficulties and Remaining Objectives
6.1 GUI

A GUI developed with the VSTGUI SDK was not included. An attempt was made to create 
a GUI. External PNG libraries were successfully included, but some GUI source files were 
not present in the sample projects. These source files were downloaded from the VSTGUI 
project’s SourceForge website, but appeared to be of a different version than required: 



The Wall VST Plug-In Report [IMD 3004]	 Allen Pestaluky

April 9th, 2008	 Page �

The VstWindow structure was not present this newer version. Some research was done 
and it appeared that one file in this package should have had the definition, but it was not 
present. No version with this definition was found.

Because no working sample project was provided and attempts to correct and complete 
the sample project failed, no GUI was implemented. The plug-in is still fully functional and 
can be used in any audio environment compatible with the VST effect interface.

6.2 Frequency Specific Reflectivity (Wall EQ)
No equalizer was included due to time restrictions caused by research into a faster Fourier 
transform for the pitch shifting algorithm used in this project.

6.3 A Faster FFT
An attempt to include a faster fast Fourier transform was made. FFTW (http://www.fftw.
org/) looked to be an effective solution, but problems with the windows library provided 
on their website prevented integration of this element. It appeared that the .dll library 
provided on their website was corrupt, but no alternate file was found.

6.4 Headphones (ITD and IID) and HRFR (DirectSound HRTF)
Inter-Aural Time Difference (ITD), Inter-Aural Intensity Difference (IID), and Head Related 
Frequency Response were not integrated in this project. The application of such audio 
processing in this environment is not as critical as it would be for other applications such 
as video games. The stereo pan effect produced by changing the Listener’s angle is enough 
to provide some spacial cues to the listener’s position relative to the walls.

6.5 Buffer Memory Leak
When temporary buffers were initially created, they allocated new memory space inside 
of the audio processing methods. This proved to be a large problem, as the host environ-
ment would continue to use up more memory until the program crashed. The cause of 
this problem was discovered and resolved. Now each temporary buffer only allocates new 
memory once and is deleted during the destruction process of the effect object.

7 Limitations
7.1 Real time FFT Issues

As previously stated, it may not be possible to perform two, or even one, pitch shift 
transformations to the audio stream during real time playback. This is caused by a slow 
Fourier Transform function that is used in the pitch shifting process. No alternative Fourier 
Transform was integrated due to time restrictions.

http://www.fftw.org/
http://www.fftw.org/


The Wall VST Plug-In Report [IMD 3004]	 Allen Pestaluky

April 9th, 2008	 Page �

7.2 Audio Stream “Peaking”
If the reflectivity of a wall is set to a value higher than 1.0, it is very possible that the audio 
stream will quickly begin to rise and peak. This problem could have been eliminated by 
limiting the user to only be able to set a negative gain. Because of situations where a user 
may want the wall reflections to increase the gain of the audio stream, It was decided that 
giving the user as much control as possible was more important than limiting the function-
ality to prevent problems such as this.

8 Acknowledgements
8.1 Steinberg Media Technologies

Thanks to Steinberg Media Technologies who provided the VST interface, VST SDK, and 
sample plug-ins that were used in the development of this project. The samples that were 
used as a starting point for this project were “AGain” and “ADelay”.

8.2 Pitch Shift
The pitch shift and Short Time Fourier Transform code used in this project was generously 
provided by Stephan M. Bernsee of http://www.dspdimension.com.

8.3 Special Thanks
Thanks for all the help and coaching from Dr. Chris Joslin of Carleton University, Ottawa 
who not only gave me the opportunity to develop this plug-in, but also helped get me 
started in understanding how audio processing works.

http://www.dspdimension.com
http://www.csit.carleton.ca/~cjoslin/

