
Predevelopment Planning Document [IMD 3002] Allen Pestaluky

February 4, 2008 11:00 PM Page 1

1 Introduction
This predevelopment planning document outlines the objectives and basic design ele-
ments of a racing game engine that will be completed for IMD 3002: 3D Computer Graph-
ics. Designs, mock-ups, and diagrams will be used to help explain certain components of
the game engine. This document contains three main elements:

1.1 [Critical Elements]
Critically important elements of the racing game engine will be written in black text. These
elements are fundamental to the game engine and are intended to be fully functional in
the final submission of the project.

1.2 [Non-Critical Elements]
Elements that are not essential to the full completion of the game engine will be written
in blue text. Though these elements are intended to be fully functional in the final submis-
sion of the project, they may be removed if time restrictions prevent the completion of
the game engine.

1.3 [Extra Elements]
Extra elements of the racing game engine will be written in red text. These elements are
not required for the game engine and are not intended to be fully functional in the final
submission of the project. In diagrams and specifications, extra elements may not be
described in full detail for this submission of the report. However, If time allows, they may
be added to refine the final submission.

2 Game Description
2.1 A Science Fiction Racing Game...

This video game engine will be designed for a science fiction
time-trial racing game. In this game the player will control a
hover-car vehicle and try to complete the track as quickly as
possible. If the player deviates from the track, they will touch a
“death plane”. This will disqualify the player from the race and
they must start over.

There may be a gap in the track where the player must fly over to
continue. A “Grapple Point” will be located above the gap in the track
which will allow the car to hover over the gap by using its “Grapple
Beam”. The “Grapple Beam” will accelerate the car towards the grapple
point. This grappling method may also be used on sharp corners to help
the vehicle maintain speed without going off track.

02:31

374 km/h

Time:

Speed:

02:31

374 km/h

Time:

Speed:

Predevelopment Planning Document [IMD 3002] Allen Pestaluky

February 4, 2008 11:00 PM Page 2

2.2 Floating Tracks, Hills, and Loops [Extra]
Floating tracks with hills and loops may be used. The car will interact with the track as
a vehicle would in our real world. If the player falls off the floating track, they will fall to
collide with the “death plane” and will be disqualified.

3 Objectives
3.1 Player Interaction with Vehicle

The player must be able to control the car: acceleration forward/reverse, turn left/right.
The speed of the vehicle must not go above a set value.

3.2 Vehicle Interaction with World
When the car goes off the track, completes the track, or collides with an object such as the
grappling point, certain events must be triggered. Gravity must also be present to pull the
car towards the ground after using the grapple beam.

3.3 Camera
The player must always know what is happening in the 3D world to ensure they will be
able to effectively control their vehicle. The camera must always be positioned to show the
vehicle and the track in front of it.

3.4 Grappling System
The player must be able to select a grapple point and control when to attach and let go.
When the vehicle is latched on, the car must accelerate towards the grapple point.

3.5 Play Again Screen
The play again screen will be shown when the user is disqualified or finishes the race. It
will allow the player to restart the race.

3.6 HUD [Non-Critical]
The user must be shown the speed of the vehicle and the current time passed since the
beginning of the race.

3.7 Music [Non-Critical]
High energy background music should play and repeat to add excitement to the race. This
music should be as non-repetitive as possible to ensure that it does not distract the player
after time.

3.8 Variable Window Resolutions [Extra]
Control over the resolution of the window should be given to the user. Full screen is
another possibility that should be considered.

3.9 Sound Effects [Extra]
Sound effects may be included to add to the intensity of the game.

Predevelopment Planning Document [IMD 3002] Allen Pestaluky

February 4, 2008 11:00 PM Page 3

3.10 Start of Race Countdown [Extra]
To ensure that the player is ready for the race, a countdown to the start of the race may be
included.

3.11 Floating Tracks, Hills, and Loops [Extra]
The game may also feature floating tracks with hills or “space-aged” loops and corkscrews.

4 Specifications
4.1 Player Interaction with Vehicle

This game engine will use a “wasd” control scheme. This style of controls will mimic arrow
keys (“w“ is up, “s” is down, “a” is left, “d” is right) while allowing a right-handed player to
easily hold the mouse while using the keyboard at the same time.

4.1.1 Acceleration:
The player will use the “w” key to accelerate in the direction that the vehicle is pointing
towards. The “s” key will be used to accelerate in the opposite direction. There will be a
maximum and minimum instantaneous velocity. Every time the velocity is increased or
decreased by the player, it will be checked against these maximum and minimum values.
[see 5.2.1.2]

4.1.2 Vehicle Steering
The user will use the “a” and “d” keys to steer the vehicle to the left and the right. For
every time unit that the key is pressed, the car will rotate a set amount in that direction.
Because the vehicle’s velocity is a vector in the vehicle’s space, not the world space, the
rotation will effect the velocity of the vehicle in the world space.

4.2 Vehicle Interaction with World
4.2.1 Gravity

Gravity will always be acting on the vehicle as an acceleration in the negative Y direction.
When the vehicle’s Y position is at or lower than the “ground” level, the velocity in the Y
direction will be set to ground level and the vehicle will be translated in the Y direction to
the ground level just before rendering the frame. This will stop gravity from accelerating
the car through the ground.

4.2.2 Damping
To simulate a drag on the vehicle, a damping will be applied as an acceleration in the
opposite direction of the velocity vector of the vehicle.

4.2.3 The “Death Plane”
When the car is at or lower than the ground level, a check will be made to see if the car
is on the “death plane”. This will be a ground plane existing just below the track that will
span the whole world. If the car is on the death plane, user controls will be disabled and a
“You have been disqualified.” screen will be shown. At this screen, the user will be able to
reset the game to try again.

An alternate method is to use collision detection between the death plane and the vehicle.

Predevelopment Planning Document [IMD 3002] Allen Pestaluky

February 4, 2008 11:00 PM Page 4

4.2.4 The Finish Line
Using a similar detection method as used for the death plane, though not depending on
the Y component of the vehicle, the finish line will trigger the user controls to be disabled
and a screen with the final time and an option to reset the game will be shown.

4.2.5 Collision with a Grapple Point
When the vehicle is detected to have collided with a grapple point, the car will be moved
outside of the grapple point and the Y velocity will be inverted, causing the vehicle to
bounce downward while maintaining it’s speed.

4.3 Camera
The camera’s position and direction will be derived from the vehicle’s position and direc-
tion every frame. The camera’s direction vector will be rotated slightly down from the
vehicle’s direction vector and the position will be a translation of the vehicle’s position.
The position will be calculated by moving the camera to the vehicle and then translating it
backwards and upwards relative to its new direction vector.

4.4 Grappling System
4.4.1 Player Control

The grapple point will be displayed on screen as an object in the world that will be
hovering above the track. The player will use the mouse to move a cursor shaped like a
crosshair as show below. If the player clicks the left mouse button and the cursor is aimed
at a grapple point that is within a set distance from the vehicle the grapple beam will
activate. Once they let go of the left click, the grapple beam will deactivate and they must
target the grapple point and click again to reactivate the beam.

4.4.2 Physics and Calculations
The grapple beam will disable keyboard input (ie. acceleration and steering) and acceler-
ate the vehicle towards the grapple point.

This will be calculated by taking the normalized vector between the vehicle and the
grapple point and scalar multiplying it by the [acceleration * frameDuration] at each
frame. The product of this calculation (which is a vector) will be converted to the world
space and added to the velocity of the vehicle, giving the result of a gradual acceleration
towards the grapple point.

The acceleration of the grapple points must be higher than the acceleration of gravity to
be able to lift the vehicle off the ground.

02:31

374 km/h

Time:

Speed:

02:31

374 km/h

Time:

Speed:

crosshair
(cursor)

Predevelopment Planning Document [IMD 3002] Allen Pestaluky

February 4, 2008 11:00 PM Page 5

4.4.3 Grapple Beam Visuals [Non-Critical]
The grapple beam will have a translucent object drawn between the vehicle and the
grapple point when the beam is activated.

4.5 Play Again Screen
4.5.1 Message and Play Again

The user will be shown a message describing the reason for the end of the race. (“You
have been disqualified” or “Track Complete!”) A spacebar press will call the initiation
function and the game loop will start over again.

4.5.2 Fade to Screen Dim [Extra]
The screen will dim by changing the intensity of the world’s lights. This will bring focus on
the play again message. The lights will be linearly dimmed over a set period of time.

4.6 HUD [Non-Critical]
The “Heads Up Display” will shown the speed of the vehicle and the current time passed
since the beginning of the race. The speed will be measured in km/h by calculating the
magnitude of the velocity vector or the vehicle. The time will be measure in minutes and
seconds.

02:31

374 km/h

Time:

Speed:

02:31

374 km/h

Time:

Speed:

Predevelopment Planning Document [IMD 3002] Allen Pestaluky

February 4, 2008 11:00 PM Page 6

4.7 Music [Non-Critical]
Music will be created or chosen to start from silence and loop seamlessly. This means
that the waveform of the music must begin and end with a zero amplitude to avoid “pop”
sounds at the beginning of the audio track. If a “start and loop audio” function is built into
OpenGL, GLU, or GLUT then this function will be called once at the beginning of the game.
If the player finishes the race or is disqualified, the music will fade out to silence. If they
choose to race again, the music will start at the beginning of the race.

If a “start and loop audio” function is not available, a check will be made at each MainLoop
to see if the music is still playing. If it is not, the music will be started again.

4.8 Variable Window Resolutions [Extra]
When the player first starts the game engine, they will be prompted to select either full
screen or windowed mode. Next, they will be able to select their window size or resolu-
tion from a set of pre-defined options using a Combo Box. The game’s aspect ratio will be
constrained to a 4:3 ratio.

4.9 Sound Effects [Extra]
When the acceleration or reverse key is pressed an engine sound effect will be started and
will end when the key is released. The same principle will apply when the grapple beam is
activated and deactivated.

4.10 Start of Race Countdown [Extra]
Before the race timer starts and the player controls are activated, there will be a 3 second
countdown to let the user know when the race is starting. Please see the mock-up below.

3.11 Floating Tracks, Hills, and Loops [Extra]
3.11.1 Collision with the Track

With a floating track, the vehicle may collide with the track if the player falls off. Collision
detection will be used and the velocity vector of the vehicle will reversed in the required
axis and decreased after the vehicle is moved outside of the object it is colliding with.

3.11.2 Hills and Loops
An impulse-based physics engine will be implemented to allow the vehicle to interact with
hills and loops. This type of engine will constantly give the vehicle a very small movement
away from the track every time it comes close. It will also rotate the vehicle’s direction
vector to match track directly below it.

3
02:31

374 km/h

Time:

Speed:

Go!
02:31

374 km/h

Time:

Speed:

Predevelopment Planning Document [IMD 3002] Allen Pestaluky

February 4, 2008 11:00 PM Page 7

5 Execution Approach Diagram

Index

Start

Set window and
viewport size to

requested resolution

Change viewport size
and set screen to

requested resolution
Update/Check
Sound/Music

START GAME
LOOP

Set up world variables:
vehicle velocity and

position,
gravity,

state of game = “Race
not yet started”

etc...

Create world

Set frameDuration

Update Vehicle,
camera, and

grapple beam

Update HUD

Show Window Size/
Resolution Options

Show
Countdown

Show “Play
Again”

screen

What
is the

state of the
game?

Did
user

choose
windowed

mode?

No

Yes

Race has
started

Race Is Finished
or Player is
disqualified

Race has not
yet started

A

5.2

5.1

5.1

5.3

5.2

5.4

5.3

5.5

5.4

5.6

5.5

5.6

Page 8

Page 9

Page 16

Page 17

Page 18

Page 19

Predevelopment Planning Document [IMD 3002] Allen Pestaluky

February 4, 2008 11:00 PM Page 8

5.1 Set frameDuration

Set frameDuration to
1/1000 sec

Set frameDuration to
current time - recorded time

Set recorded time to
current time

Has
frameDuration

been set?

End

Start

Yes

No
Note: Since this is the first frame, we are going
to assume a very high frame rate. This is good,

because it will ensure that no weird physics
happen, say due to gravity, if it ends up taking a

long time to get the first frame completed.

Predevelopment Planning Document [IMD 3002] Allen Pestaluky

February 4, 2008 11:00 PM Page 9

5.2 Update Vehicle, Camera, and Grapple Beam

Index

Update vehicle
position

Update Camera
Location and

Rotation

Compute world
interaction

Compute
player input

Display Vehicle

Is
the

game state
“race started”?

End

Start

No

Yes

5.2.1

5.2.2

5.2.2

5.2.3

5.2.3

5.2.4

5.2.4

5.2.1

Page 10

Page 13

Page 14

Page 15

Predevelopment Planning Document [IMD 3002] Allen Pestaluky

February 4, 2008 11:00 PM Page 10

5.2.1 Compute Player Input

Index

Compute vehicle
control

Compute Grapple

Set “grapple is in
progress”

Set grapelPointPosition to the
position of the grapple point

draw crosshair at
cursor location

Is

grapple
in progress?

Is
left

click being
held?

Is

cursor
over a

grapple
point?

is
the

magnitude
of (grapple

position - vehicle
position) < max grapple

distance?

End

Start

Yes

Yes Yes

Yes

No

No No

No

5.2.1.1

5.2.1.1

5.2.1.2

5.2.1.2

Page 11

Page 12

Predevelopment Planning Document [IMD 3002] Allen Pestaluky

February 4, 2008 11:00 PM Page 11

5.2.1.1 Compute Grapple

End

Start

Is
left

click being
held?

Yes

No

Set “grapple is
NOT in progress”

Normalize (grapelPointPosition - vehiclePosition)

Multiply result by (grapelAccelleration * frameDuration)

Add result to vehicleVelocity

Change result from world
space to vehicle space

Predevelopment Planning Document [IMD 3002] Allen Pestaluky

February 4, 2008 11:00 PM Page 12

5.2.1.2 Compute Vehicle Control

Rotate vehicle by
(frameDuration * one rotation unit)

Rotate vehicle by
(frameDuration * -one rotation unit)

Switch:

is

||vehicleVelocity||
< ||vehicle velocity +

result||?

is

||vehicleVelocity||
< ||vehicle velocity +

result||?

is

||vehicleVelocity
+ result|| > max
forward speed?

is

||vehicleVelocity
+ result|| > max
reverse speed?

w? s? a? d?

End

Start

Multiply direction vector (or unit vector) of the
vehicle by (forwardAccelleration * frameDuration)

Multiply direction vector (or unit vector) of the vehicle
by (reverseAccelleration * frameDuration)

Add result to vehicleVelocity

No No

No No

Yes Yes

Yes Yes

This checks to see if the
vehicle is going the opposite

direction of the increment

Predevelopment Planning Document [IMD 3002] Allen Pestaluky

February 4, 2008 11:00 PM Page 13

5.2.2 Compute World Interaction

Gravity:
velocity += gravity accel. * frameDuration

End

Start

Damping:
Normalize the velocity

multiply result by (dampingAccelleration * frameDuration)

Add result to vehicleVelocity

Predevelopment Planning Document [IMD 3002] Allen Pestaluky

February 4, 2008 11:00 PM Page 14

5.2.3 Update Vehicle Position

Set game state to
“Race is finished”

Set game state to
“Player is Disqualified”

Move car outside of grapple point
and negate the Y component of

the velocity vector

Change the Y component of the
car’s position to ground level.

Change the Y component of the
car’s velocity to zero.

Is
the

car over the
death plane and

is the car’s position’s Y
component = ground

level?

Is
the

car over
the finish line?

Is
the Y

component
of the car’s

position < ground
level?

Is
car

colliding
with a grapple

point?

End

Start

position += result * frameDuration

change vehicleVelocity into world space

Yes

Yes

Yes

Yes

No

No

No

No

Predevelopment Planning Document [IMD 3002] Allen Pestaluky

February 4, 2008 11:00 PM Page 15

5.2.4 Update Camera Location and Rotation

End

Start

cameraRotation = vehicleRotation

cameraPosition = vehiclePosition + [(x increment), 0, (z increment)]
(x and z increments are relative to the car’s direction)

rotate camera down

Predevelopment Planning Document [IMD 3002] Allen Pestaluky

February 4, 2008 11:00 PM Page 16

5.3 Update HUD [Non-Critical]

End

Start

Display speed at the
bottom left corner.

Probably an apprx.
location of [10, height-30]

Display time at the top
right corner. Probably

an apprx. location of
[width-100, 10]

Speed = ||[vehicle velocity]||

= √x2 + y2 + z2

Predevelopment Planning Document [IMD 3002] Allen Pestaluky

February 4, 2008 11:00 PM Page 17

5.4 Update/Check Sound/Music [Non-Critical]

Play
music

Play sound
effect

Is
there

a sound
effect request?

Is
the

music
playing?

Is

volume
= zero?

Is

music
playing?

Is
game

state “race
is finished”
or “player is

disqualified”?

End

Start

Yes

Yes Yes Yes

No

No

No

NoNo

Yes

Set volume to full

Stop music

volume -= decrement

Predevelopment Planning Document [IMD 3002] Allen Pestaluky

February 4, 2008 11:00 PM Page 18

5.5 Show Countdown [Extra]

Set countdown to
“started”

Set start time to
(current time + 3 sec)

Set game state to
“race has started”

Display
(start time - current time)

in seconds

Has
the

countdown
started?

Is
current time > start time?

End

Start

Yes

No

No

Yes

Predevelopment Planning Document [IMD 3002] Allen Pestaluky

February 4, 2008 11:00 PM Page 19

5.6 Show “Play Again” screen

Decrement light
intensity by

(dimAcceleration
*FrameDuratin)

Set the final time to be
the elapsed time

Display “Press
Spacebar to try

again”

Display “You have
been disqualified”

Display “Track
Complete!” and the

final time

Is
the
light

intensity < dim
value?

Has
the

spacebar
been pressed?

Has
the

final time
been set?

Did
the

player finish
the race?

End

Start

Yes

No Yes

Yes

No

Yes No

No

(Set up world variables)
See “5 Execution

Approach Diagram”

A

